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a b s t r a c t

The filtering and predictive skill for turbulent signals is often limited by the lack of infor-
mation about the true dynamics of the system and by our inability to resolve the assumed
dynamics with sufficiently high resolution using the current computing power. The stan-
dard approach is to use a simple yet rich family of constant parameters to account for
model errors through parameterization. This approach can have significant skill by fitting
the parameters to some statistical feature of the true signal; however in the context of real-
time prediction, such a strategy performs poorly when intermittent transitions to instabil-
ity occur. Alternatively, we need a set of dynamic parameters. One strategy for estimating
parameters on the fly is a stochastic parameter estimation through partial observations of
the true signal. In this paper, we extend our newly developed stochastic parameter estima-
tion strategy, the Stochastic Parameterization Extended Kalman Filter (SPEKF), to filtering
sparsely observed spatially extended turbulent systems which exhibit abrupt stability
transition from time to time despite a stable average behavior. For our primary numerical
example, we consider a turbulent system of externally forced barotropic Rossby waves
with instability introduced through intermittent negative damping. We find high filtering
skill of SPEKF applied to this toy model even in the case of very sparse observations (with
only 15 out of the 105 grid points observed) and with unspecified external forcing and
damping. Additive and multiplicative bias corrections are used to learn the unknown fea-
tures of the true dynamics from observations. We also present a comprehensive study of
predictive skill in the one-mode context including the robustness toward variation of sto-
chastic parameters, imperfect initial conditions and finite ensemble effect. Furthermore,
the proposed stochastic parameter estimation scheme applied to the same spatially
extended Rossby wave system demonstrates high predictive skill, comparable with the
skill of the perfect model for a duration of many eddy turnover times especially in the
unstable regime.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Filtering is the process of obtaining the best statistical estimate of a physical system from partial observations of the true
signal. In many contemporary applications in science and engineering, real-time filtering of a turbulent signal involving
many degrees of freedom is needed to make accurate predictions of the future state. Important practical examples involve
. All rights reserved.
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the real-time filtering and prediction of weather and climate as well as the spread of hazardous plumes or pollutants. A ma-
jor difficulty in accurate filtering and prediction of noisy turbulent signals with many degrees of freedom is model error [35]:
the fact that the true signal is processed through an imperfect model where important physical processes are parameterized
due to inadequate numerical resolution or incomplete physical understanding. Under these circumstances, it is natural to
devise strategies for parameter estimation to cope with model errors to improve both filtering and prediction skill [32,2–
4,9,8,6,17].

Recently, we proposed the use of the test models with stochastic parameter estimation [14], where certain parameters of
the system such as damping and external forcing can be learned from the observations. This approach, called the Stochastic
Parameterization Extended Kalman Filter (SPEKF) in [14], has been shown to be effective when applied to a single mode [14].
In this paper, we extend this stochastic parameterization strategy to filtering sparsely observed spatially extended systems
with a decaying (Kolmogorov type) turbulent spectrum [19] and intrinsic model errors as in [14]. According to results in [19]
for the perfectly specified filter case, we can obtain accurate filtered solutions by filtering only the observed modes with a
reduced filter when the energy spectrum decays as a function of wavenumber. Our new approach here is to unify ideas from
these two papers [19,14], that is, to apply SPEKF only to the observed modes and let the estimates of the remaining unob-
served and least energetic modes to be unfiltered and propagated in time with the climatological model.

In this paper, we will test our newly developed strategy on a nontrivial toy model for turbulent barotropic Rossby waves
in a one-dimensional periodic domain with a time periodic external forcing. We design this model such that it exhibits insta-
bility that mimics the baroclinic instabilities in the midlatitude atmosphere at random times despite a stable long time aver-
age behavior. In this example, the model errors are introduced through our lack of information about the onset time and
duration of instability regimes. Moreover, we also introduce a second source of model error by purposely not specifying
the external forcing. In our numerical experiments with this example, we resolve this model with 105 equally spaced grid
points in a periodic domain and consider rather sparse observations at 15 equally spaced grid points. Through extensive
numerical studies, we will find that our new stochastic parametrization strategy, especially the one that combines both mul-
tiplicative and additive bias corrections, produces a significantly improved and robust filtering skill as was shown earlier in
the one-mode context in [14]. We will also find significant improvement in predictive skill with the combined model relative
to the mean model.

The paper is organized as follows. In Section 2, we describe idealized spatially extended turbulent systems: this includes
the simplest stochastic models for turbulent signals, the turbulent Rossby waves problem as an example, and the two-state
Markov process as an underlying mechanism for stability regime transitions. In Section 3, we discuss various strategies for
filtering with model errors, including the standard approaches such as the mean stochastic model (MSM) and the standard
online bias correction strategy using extended Kalman filter [22,1,7] which motivates the Stochastic Parameterization Ex-
tended Kalman Filter (SPEKF) in our recent work [14]. In this section, we also review results of SPEKF in the one-mode con-
text [14] and then specify a strategy for implementing SPEKF for spatially extended systems with sparse observations. In
Section 4, we present the numerical results for filtering, including the correctly specified and unspecified forcing and the fil-
ter skill robustness throughout variations of parameters. In Section 5, we extensively study the predictive skill on one Fourier
mode in a ‘‘super-ensemble” setup. In particular, we try to understand the effect of errors from initial conditions and a finite
ensemble size. Consequently, we show results on the full SPDE. We close both Sections 4 and 5 with short summaries. We
end the paper with concluding discussions in Section 6. Detailed calculations of correlation function and Kalman filter for-
mulas are reported in Appendixes A and B.

2. Idealized spatially extended turbulent systems

The simplest models for representing turbulent fluctuations involve replacing nonlinear interaction by additional linear
damping and stochastic white noise forcing in time which incorporate the observed climatological spectrum and turnover
time for the turbulent field [10,28,30].

As in the standard classical numerical analysis test criteria for finite difference schemes [33,29], we start with a linearized
complex s� s PDE at a constant coefficient background, ~ut ¼ Pð@xÞ~uþ~f ðx; tÞ. Here ~f ðx; tÞ is a known deterministic forcing
term. In accordance with the above approximations, additional damping �cð@xÞ~u and spatially correlated noise
rðxÞ _WðtÞ �
X1

k¼�1
rk

_WkðtÞeikx; ð1Þ
where WkðtÞ are independent complex Wiener processes for each k P 0 and the independent real and imaginary parts have
the same variance 1/2 and r�k ¼ rk and W�kðtÞ ¼W�

kðtÞ, are added to the PDE to represent the small scale unresolved tur-
bulent motions resulting in the basic frozen coefficient canonical PDE. For simplicity in notation here we discuss a scalar field
in a single space real variable but everything generalizes to a matrix system of stochastic PDEs in several space dimensions.

2.1. The simplest stochastic models for turbulent signals

With the above motivation, we consider solutions of the real valued scalar stochastic partial differential equation (SPDE):
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¼ P @

@x

� �
uðx; tÞ � c

@

@x

� �
uðx; tÞ þ f ðx; tÞ þ rðxÞ _WðtÞ;

uðx;0Þ ¼ u0ðxÞ;
ð2Þ
as the simplest model for turbulent signals. Here the initial data u0 is a Gaussian random field with nonzero covariance. As in
the usual finite difference linear stability analysis, we non-dimensionalize this problem in a 2p-periodic domain so that a
solution of (2) is given by the infinite Fourier series
uðx; tÞ ¼
X1

k¼�1
ûkðtÞeikx; û�kðtÞ ¼ û�kðtÞ; ð3Þ
where ûkðtÞ for k > 0 can be utilized in analyzing (2). For finitely discretized system, we use the finite sum of (3).
The operators P @

@x

� �
and c @

@x

� �
are defined through unique symbols at a given wavenumber k by
P @

@x

� �
eikx ¼ ~pðikÞeikx; ð4Þ

c
@

@x

� �
eikx ¼ cðikÞeikx: ð5Þ
Substituting (1), (3)–(5) into initial value problem in (2), we obtain a system of uncoupled forced Langevin equations on each
Fourier mode
dûkðtÞ ¼ ½~pðikÞ � cðikÞ�ûkðtÞdt þ f̂ kðtÞdt þ rkdWkðtÞ; ûkð0Þ ¼ ûk;0: ð6Þ
The term f̂ kðtÞ is the Fourier coefficient of the deterministic forcing f ðx; tÞ.
We assume that ~pðikÞ is wave-like so that
~pðikÞ ¼ ixk; ð7Þ
where �xk is the real valued dispersion relation while cðikÞ represents both explicit and turbulent dissipative processes so
that cðikÞ is non-negative with
cðikÞ > 0 for all k – 0: ð8Þ
Under these assumptions, Gaussian equilibrium distribution for (6) exists and provided f ðx; tÞ ¼ 0 this statistical equilibrium
distribution has mean zero and variance Ek, defining the climatological energy spectrum
Ek ¼
r2

k

2cðikÞ ; 1 6 k < þ1: ð9Þ
Mathematically, one requires
P

Ek <1 to define the stochastic solution of (2) correctly with a similar requirement on the
Gaussian initial data in u0ðxÞ. However, there is genuine physical interest in situations with an even rougher turbulent spec-
trum such as white noise where Ek is constant. In these cases, we truncate the sum in (3) to a large finite sum.

Another quantity that is typically measured in a turbulent system is the eddy turnover time, which is the time it takes for
an eddy to decorrelate in the equilibrium statistical state. Mathematically, the eddy turnover time at a given wavenumber is
defined as the integral on the positive half line (from 0 to 1) of the absolute value of the correlation function
RkðsÞ � hðûkðtÞ � �̂ukÞðûkðt þ sÞ � �̂ukÞ�i ¼ Ek e�cðikÞs e�ixks; ð10Þ
which is the absolute damping time, 1=cðikÞ, when normalized by Ek. In [14], we called this quantity the decorrelation time
since we only studied one Fourier mode in that paper. In this paper, we refer to this quantity as the damping time since we
do not want to confuse the reader with the physical space decorrelation time defined below. The detailed calculation of the
correlation function, RkðsÞ, is based on the exact solution of SDE in (6) and is given in Appendix A.

2.2. Example: a simple model for turbulent Rossby waves

In this paper, we consider barotropic Rossby waves with phase varying only in the north–south direction in a one-dimen-
sional periodic domain, with dispersion relation [27,31] given by
xk ¼
b
k
: ð11Þ
On the planetary scale, the midlatitude beta plane approximates the effect of rotation with
b ¼ f
a
¼ 2X cosðhÞ

a
; ð12Þ
where a ¼ 6:37� 106 m is the mean radius of the earth and X ¼ 7:292� 10�5 rad=s is the earth angular speed of rotation
[21]. In our model, we consider a periodic domain of length 2p so that the radius has a unit length a ¼ 1. Converting the time
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into days, we find that the parameter b at latitude h ¼ 45� is b ¼ 2X cosð45�Þ s�1 ¼ 8:91 day�1. Thus the natural frequency for
this model is given by xk ¼ 8:91=k so the lowest wavenumber, k ¼ 1, has an oscillation period of roughly 2p=x1 ¼ 17 h.

It is also natural to assume uniform damping
cðikÞ ¼ �d > 0; ð13Þ
representing the bottom drag (Ekmann) friction. It is known from observations that on scales of order of thousands of kilo-
meters these waves have a k�3 energy spectrum [26] so that
Ek ¼ k�3
: ð14Þ
Tuning the model to have 3 day prediction like the weather [25], we choose a damping strength �d ¼ 1:5 such that the phys-
ical space correlation function
RðsÞ ¼
P1

k¼�1RkðsÞP1
k¼�1Ek

¼ e�
�ds
P1

k¼�1Ek e�ixksP1
k¼�1Ek

ð15Þ
decays after 3 days. Fig. 1 shows the physical space correlation function RðsÞ as a function of the lag s for a finite sum of
N ¼ 52 discrete Fourier modes. We also use the equilibrium energy spectrum in (9) to calibrate the system noise strength

rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�d=k3

q
at each wavenumber.

We also consider the following external periodic forcing
f̂ kðtÞ ¼
0:5e0:15it ; if 0 < k 6 5;

0:5 6
k

� �3 e0:15it ; if k > 5;

f̂ ��k; if k < 0;

8>><>>: ð16Þ
which mostly acts on the lower modes of the system. The frequency is chosen to represent a long wave background forcing
with period of 2p=0:15 ¼ 41:88 days, which is much slower than the 3 day decorrelation time. In the numerical simulations
below, we will also consider random forcing.

2.3. Instability transitions with a two-state Markov process

Now, we describe the procedure for generating a signal that exhibits transitions between stable and unstable regimes. In
the unstable regime, we mimic the baroclinic instability that governs weather wave patterns in the midlatitude atmosphere.
Fig. 1. Physical space temporal correlation function of uðx; tÞ, computed using RðsÞ in (15), decorrelates after 3 days.
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Numerically, we allow wavenumbers 3–5 (typical modes where baroclinic instability occurs [31]) to switch between stable
and unstable regimes. Mathematically, the stable (unstable) regime is characterized by positive (negative) damping and cor-
responds to the loss (gain) of barotropic energy. Simultaneously, the first two modes are weakly (strongly) damped when the
next three modes are in the stable (unstable) regime. This mechanism models energy flux from the intermediate waves to
the largest waves in the stable regime and vice versa in the unstable regime.

As in [14], we consider an exponentially distributed waiting time between these two regimes. That is, the waiting time
the system spends in the stable regime before it switches to the unstable regime is a random variable Tst with cumulative
distribution function given by
Table 1
Dampin

Mod

1, 2
3, 4,
P6
PðTst < sÞ ¼ 1� e�ms; ð17Þ
where m is a rate of change from stable to unstable regime. Similarly, for the random time Tun that the system spends in the
unstable regime, we have
PðTun < sÞ ¼ 1� e�ls; ð18Þ
where l is a rate of change from unstable to stable regime. In our numerical model, we set m ¼ 0:1 and l ¼ 0:2 such that the
system spends on average 10 days in the stable regime and 5 days in the unstable regime. We choose the damping strength
of each mode as in Table 1 such that the average damping is constant,
�d ¼ md� þ ldþ

mþ l
¼ mdw þ lds

mþ l
¼ 1:5: ð19Þ
In Fig. 2(a), we show a space–time plot of the solutions of the stochastic toy model for the Rossby waves described in Section
2.2 together with the instability transitions (the ‘‘switching” SPDE) described above, solved with time step 0.001 and discret-
ized with a total of 2N þ 1 ¼ 105 grid points in a 2p periodic domain. In Fig. 2(b), we also show the stability regime, i.e., the
damping strength of modes 3–5, which is typically unknown in reality. In this snapshot, we see a strong coherent westward
wind burst which begins 2 days after the unstable transition. The fact that the occurrence of this westward wind burst is not
exactly right after regime transition makes this turbulent signal an extremely hard test problem. In the remainder of this
paper, we refer to this turbulent signal as the true signal that we want to filter and predict.

3. Filtering with model errors through stochastic parameter estimation

In the perfect model scenario, we can filter and predict the true signal (see Fig. 2) with the ‘‘perfectly specified filter”. In
this paper, we consider the Fourier domain Kalman filter (the reader unfamiliar with the Kalman filter can consult Appendix
B below), described in [5,19], with prior statistics generated through solving the statistics of SDE in (6) exactly, assuming that
the exact time series of the damping coefficients of the switching modes are known. In Section 4, we will present solutions
with this perfectly specified filter as a benchmark.

In reality, however, we do not know in what regime the signal is and when a transition is going to occur. Moreover, we do
not even know which modes exhibit instability. This incomplete knowledge introduces what is known as ‘‘model error”. An-
other source of model error we will also study comes through unspecified external forcing f ðx; tÞ.

3.1. Standard approaches

In reality, what is available is the long time average statistics of the true signal based on various measurements from the
past events, such as the average damping time 1=�d and the equilibrium variance Ek ¼ r2

k=2�d (in turbulence theory, this quan-
tity is also called the energy spectrum). In this section, we describe briefly the two standard approaches for filtering:

3.1.1. Mean stochastic model (MSM)
The simplest commonly used filter model [18,20] is the mean stochastic model (MSM), which is a model that is based on

the two equilibrium statistical quantities, energy spectrum and damping time; MSM is exactly the climatological stochastic
model (CSM) in [18,20]. The mean stochastic model (MSM) solves
dûkðtÞ
dt

¼ ð��dþ ixkÞûkðtÞ þ rk
_WkðtÞ þ ~f kðtÞ; ð20Þ
g strength.

es Stable Unstable

dw ¼ 1:3 ds ¼ 1:6
5 dþ ¼ 2:25 d� ¼ �0:04

�d ¼ 1:5 �d ¼ 1:5
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a

Fig. 2. The true signal uðx; tÞ for period of time between t ¼ 240 and 270. (a) Space–time plot with contour interval 2 unit/day, dark contour for positive
value and grey contour for negative value. (b) Damping cðtÞ for the solution uðx; tÞ shown in panel (a).
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for prediction and solves its first and second ordered statistics for filtering. Here �d ¼ 1:5 is an average damping constant for
all modes; model errors are introduced through unknown time dependent true positive and negative damping cðikÞ in the
switching modes (as discussed in Section 2.3) and ~f kðtÞ can be even an incorrectly specified forcing.

3.1.2. Online bias estimation
A more sophisticated approach to filtering is through updating the unknown damping and forcing coefficients on the fly

[32,2–4,9,8,6,17,11,12]. In general, given any nonlinear dynamical system depending on unknown parameters, k,
du
dt
¼ Fðu; t; kÞ; ð21Þ
one augments the state variable u by parameters k and adjoins an approximate dynamical equation for the parameters
dk
dt
¼ gðkÞ: ð22Þ
The right hand side of (22) is often chosen on an ad-hoc basis as gðkÞ � 0 or white noise forcing with a small variance [11,12].
The partial observations of the true signal are often processed by an Extended Kalman Filter (EKF, see [22,1,7]) applied to

the augmented system in (21) and (22) where the parameters k are estimated adaptively from these partial observations.
Note that even if the original model in (21) is linear, it readily can have nonlinear dependence on the parameters k through
(22) so typically an EKF involving the linear tangent approximation is needed for parameter estimation in this standard case.
Some recent applications of these and similar ideas to complex nonlinear dynamical systems can be found in [32,2,3,9,8].

3.2. The Stochastic Parameterization Extended Kalman Filters (SPEKF)

In this section, we review the stochastic parametrization strategy ‘‘Stochastic Parameterization Extended Kalman Filter”
(SPEKF) recently introduced by the authors [14]. Although our stochastic parameter estimation strategy is motivated by the
augmentation approach discussed earlier in Section 3.1.2, it differs from the other online approaches since it utilizes nonlin-
ear exactly solvable statistics that includes both the additive and multiplicative bias corrections. Therefore, no linear tangent
approximation is needed in SPEKF.
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The SPEKF appends the stochastic model for evolution of state variable ûkðtÞ with combined additive, bkðtÞ, and multipli-
cative, ckðtÞ, bias correction terms:
dûkðtÞ ¼ ðð�ckðtÞ þ ixkÞûkðtÞ þ bkðtÞ þ ~f kðtÞÞdt þ rkdWkðtÞ;
dbkðtÞ ¼ ð�cb;k þ ixb;kÞðbkðtÞ � b̂kÞdt þ rb;kdWb;kðtÞ;
dckðtÞ ¼ �dc;kðckðtÞ � ĉkÞdt þ rc;kdWc;kðtÞ;

ð23Þ
for improving filtering and prediction with model errors. Here, stochastic parameters cb;k and dc;k represent the damping and
parameters rb;k and rc;k represent the strength of the white noise forcing of the additive and multiplicative bias correction
terms, respectively. The stationary mean bias correction values of bkðtÞ and ckðtÞ are given by b̂k and ĉk, correspondingly; and
the frequency of the additive noise is denoted as xb;k. As in our earlier study in [14], we choose the stationary mean bias
correction values to be b̂k ¼ 0 since this is the statistical long time average for periodic mean zero function and the stationary
damping to be ĉk ¼ �d, which is the average damping of the original system. Note that Wc;kðtÞ is a Wiener process while WkðtÞ
and Wb;kðtÞ are complex valued Wiener processes with their real and imaginary parts being independent Wiener processes.

It is important to realize that the parameters of the state variable ûkðtÞ come from the characteristics of the physical sys-
tem, which is modeled by the first equation in (23). On the other hand, stochastic parameters of bkðtÞ and
ckðtÞ; fcb;k; xb;k; rb;k; dc;k; rc;kg, are introduced in the model and, in principle, cannot be directly obtained from the char-
acteristics of the physical system. At first glance, this approach looks very counter intuitive in the sense that it introduces
five stochastic parameters to parameterize bk and ck on each Fourier mode alone. However, our comprehensive numerical
study [14] on the fifth mode of (2) showed that there exists a robust parameter set for high filtering skill beyond the skill
of MSM and in certain situations as good as the perfectly specified filter. In the numerical simulations in Section 4, we will
find that if we use the same five stochastic parameters for each wavenumber, the high filtering skill on the fifth mode of (2)
as reported in [14] translates to the full switching SPDE by choosing a parameter set that belongs to the robust set of the fifth
mode as in [14] independent of wavenumber. Therefore, we avoid having to choose 5N parameters (assuming there are five
stochastic parameters on each mode and a total of N wavenumbers) but only 5 for the whole SPDE. For predictive skill, we
first perform a comprehensive numerical study for the fifth mode alone in Section 5 to determine whether there is a robust
stochastic parameter set. Then, we will proceed the same way as in the study for filtering when such robust set exists for the
whole SPDE.

As in [14], we also consider two special cases of the combined model (23): the additive model when we have only the addi-
tive bias correction
dûkðtÞ ¼ ðð��dþ ixkÞûkðtÞ þ bkðtÞ þ ~f kðtÞÞdt þ rkdWkðtÞ;
dbkðtÞ ¼ ð�cb;k þ ixb;kÞbkðtÞdt þ rb;kdWb;kðtÞ;

ð24Þ
and the multiplicative model when we have only the multiplicative bias correction
dûkðtÞ ¼ ðð�ckðtÞ þ ixkÞûkðtÞ þ ~f kðtÞÞdt þ rkdWkðtÞ;
dckðtÞ ¼ �dc;kðckðtÞ � �dÞdt þ rc;kdWc;kðtÞ;

ð25Þ
where �d is the mean value of the damping.
For the true signal, we only have noisy observations of ûk;m � ûkðtmÞ at discrete times tm but not of bkðtÞ and ckðtÞ since the

last two variables are parameters artificially introduced in the model. Therefore, the observation v̂k;m at discrete time tm is
modeled by
v̂k;m ¼ ûk;m þ r̂o
k;m; ð26Þ
where r̂o
k;m is a Gaussian noise with mean zero and variance r̂o. The SPEKF uses the exact mean and second moment to solve

the nonlinear filtering problem (23) and (26). As in [14], we refer to this approach as SPEKF-C. Alternatively, we also have
SPEKF-A that solves the linear filtering problem (24) and (26) and SPEKF-M for nonlinear problem (25) and (26). Note that
in each of these three strategies, the prior mean and covariance are solved analytically using the calculus tricks introduced in
[15,16] for filtering slow–fast systems. For detailed computation of these statistics, one can consult [14].

To conclude this section, we review and summarize some of the important results for filtering the one-mode case in [14],
which include: (1) SPEKF-C is the method of choice for filtering with model errors since its high filtering skill (nearly as good
as the perfect model in many regimes) is robust and the least sensitive to variations of stochastic parameters, observation
time and observation error variance; (2) the simpler strategies, SPEKF-A and SPEKF-M, clearly beat MSM in most parameter
regimes and sometimes their skill is as good or even slightly supersedes the skill of SPEKF-C. The multiplicative method is
better than the combined model when forcing is specified correctly, this is because the additive bias term, bðtÞ, introduces
sampling error. However, SPEKF-A and SPEKF-M are not as robust as SPEKF-C towards the changes in the stochastic param-
eters; (3) we also note that the advantage of SPEKFs over MSM in addressing the model errors is more significant when re-
gime transitions occur more often; (4) when the external forcing is unspecified or incorrectly specified, the additive bias
correction term, bkðtÞ, in SPEKF-C and SPEKF-A learns the unknown part of the forcing and the combined and additive models
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still perform very well with RMS errors comparable to the RMS error of the perfectly specified filter. This high skill was not
found in SPEKF-M when forcing is unspecified or incorrectly specified.

3.3. Implementation of SPEKF on sparsely observed spatially extended systems

In practice, observations may not be always available at every grid point when models are resolved with higher resolution
and in many situation sparse observations are available at random locations. In this paper, we consider a situation where
sparse observations are available at every P grid points as in [19,20]. Strategies for randomly located observations were re-
ported elsewhere by one of the authors [29].

Suppose the observations of the true signal defined in (2) are taken at 2M þ 1 grid points which are regularly spaced, i.e.,
at ~xj ¼ j~h; j ¼ 0;1; . . . ;2M with ð2M þ 1Þ~h ¼ 2p. When M < N, where ð2N þ 1Þh ¼ 2p and h denotes the mesh spacing for the
finite difference approximation, we have sparse regular observations since there are fewer observations than discrete mesh
points. Here, for simplicity in exposition, we assume that ~xj coincides with xqþjP for some q 2 Z, and
P ¼ 2N þ 1
2M þ 1

; ð27Þ
defines the ratio of the total number of mesh points available to the number of sparse regular observation locations in (2).
Therefore, the model for sparse observation is given by
vð~xj; tmÞ ¼ uð~xj; tmÞ þ ro
m; ~xj ¼ j~h; j ¼ 0;1; . . . ;2M; ð28Þ
where ro
m is a Gaussian noise with mean zero and variance ro. In our numerical simulation, we will consider rather sparse

observations with M ¼ 7 and N ¼ 52, that is, 15 observations uniformly distributed at every P ¼ 7 grid points of a total of 105
model grid points. We take the observations at every Dt ¼ tmþ1 � tm ¼ 0:25 time units which correspond to 6 h in physical
time. In each Fourier mode, this observation time corresponds to roughly one third of the damping time scale 1=�d ¼ 0:66.
However, our result is not restricted to this specific observation time, e.g. see [14] for a complete study of the fifth mode
of (2) with longer observation times.

The sparse observation model in (28) can be represented in Fourier space as follows:
v̂‘;m ¼
X

k2Að‘Þ
ûk;m þ r̂o

m; j‘j 6 M; ð29Þ
where r̂o
m is a Gaussian noise with mean zero and variance r̂0 ¼ ro=ð2M þ 1Þ and
Að‘Þ ¼ fkjk ¼ ‘þ ð2M þ 1Þq; jkj 6 N; q 2 Zg; ð30Þ
is the aliasing set of wavenumber ‘, which has P components (see [29,19,20] for details). In earlier work [19], two of the
authors demonstrated high filtering skill in the perfectly specified filter context with no stability transitions (described in
Section 2.3) by reducing the filtering problem (2) and (28) to M decoupled filters, each consisting of P-dimensional diagonal
Langevin equation (6) with scalar observation model (29). Furthermore, they showed that further filter reduction to indepen-
dent scalar filters can still produce high filtering skill when the energy spectrum is decaying (i.e., Ek ¼ k�3 in our case).

One type of filter reduction [19] is to require the aliased modes in each aliasing set, k 2 Að‘Þ; k – ‘, to fully trust the
dynamics since the observed (resolved or primary) mode ‘ is the most energetic mode. This approximation, called the ‘‘Re-
duced Fourier Domain Kalman Filter” (RFDKF), models the observation in the following fashion
v̂ 0‘;m � v̂‘;m �
X

k2Að‘Þ;k – ‘

ûk;m ¼ û‘;m þ r̂o
m; ð31Þ
such that it is in the form of (26). In (31), observation v̂ ‘ is adjusted by the summation of the aliased modes. These aliased
modes are propagated forward with the mean model in (20) without taking into account any observations.

In this paper, we implement SPEKFs (discussed in Section 3.2) with observation model RFDKF in (31). Numerically, we
only filter M resolved modes (which are wavenumbers 1–7 in our numerical example) with SPEKF and propagate the remain-
ing modes, k ¼ 8; . . . ;52, with the mean model in (20) without taking into account any observations. For diagnostic purposes,
we also implement the perfectly specified filter and MSM (discussed in the beginning of Section 3 and 3.1.1) with the obser-
vation model in (31).
4. Numerical results for filtering

In our numerical simulations, we consider solutions of the form (3) with the finite number of modes N ¼ 52. This corre-
sponds to 2N þ 1 discrete points on the 2p periodic interval. The true signal as shown in Fig. 2 is generated for a total of
500 days, which corresponds to T ¼ 2000 assimilation cycles with observation time Dt ¼ 0:25. Observations are generated
at uniformly distributed locations as described earlier in (28) with error noise variance ro ¼ 0:3 in the correctly specified
forcing case and ro ¼ 0:5 in the incorrectly specified forcing case. Both noise variances in the k-space, ro=ð2M þ 1Þ, exceed
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the equilibrium energy spectrum Ek ¼ k�3 of the unforced system for k > 3. When the turbulent signal is externally forced
(with (16) in our example), its energy spectrum is given as follows:
Fig.
Ek ¼ lim
T!1

1
2T

Z T

0
jûkðsÞj2 ds: ð32Þ
In Fig. 3(b), we find that the above choice of observation error variance, indeed, exceeds the energy spectrum (32) for wave-
numbers k > 7. In this figure, the energy spectrum (32) is approximated by averaging over a finite amount of time
T ¼ 450 days after a transient period of 50 days. For the remainder of this paper, the term ‘‘energy spectrum” refers to
the spectrum of the forced system defined in (32), and not to that of the unforced case, k�3. We will discuss results with dif-
ferent noise level in Section 4.3.

We quantify the performance by measuring the Root-Mean-Square (RMS) difference between the true signal, utðxj; tmÞ,
and the filtered solution, �uðxj; tmÞ,
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1eMð2N þ 1Þ

XeM
m¼1

X2Nþ1

j¼1

j�uðxj; tmÞ � utðxj; tmÞj2

vuuut ; ð33Þ
where teM ¼ T. Below, we also qualitatively compare the energy spectra generated from the true signal with those generated
through various posterior filtered solutions.

For SPEKFs, we choose stochastic parameters that belong to the robust set of parameters based on the comprehensive
study in [14]; they are fcb;k ¼ 0:1�d; xb;k ¼ xk; rb;k ¼ 4r5 ¼ 0:6; dc;k ¼ 0:1�d; rc;k ¼ 4r5 ¼ 0:6g for filtered wavenumbers
k ¼ 1; . . . ;7. In Section 4.3, we will check the robustness of the filter skill when these parameters are changed.

4.1. Correctly specified forcing

In Fig. 3(a), we compare the RMS errors of the nine most energetic modes. The perfectly specified filter provides the
smallest error as expected since the perfect model utilizes the exact dynamics. The multiplicative model produces a
filtered solution with error just slightly larger than the error of the perfectly specified filter. Note that the error of the
multiplicative model is still very low for both stable and unstable regions of the spectrum (as described in Table 1 insta-
bility occurs in modes 3–5). Next, the combined and additive models produce the filtered solutions with errors that are
almost the same as the errors of the perfectly specified filter for modes 1 and 2 and then deviate from the corresponding
values of the perfectly specified filter error for higher modes. And finally, the MSM has a very large error for the unstable
modes 3–5. On modes higher than 5, MSM is the perfectly specified filter since the true damping of these modes is
exactly equal to the average damping of the system �d ¼ 1:5. One important bulk quantity to recover from filtering is
the energy spectrum (32) of the true signal. In Fig. 3(b), we see that the energy spectrum of the posterior state of
MSM underestimates the true energy spectrum of the unstable modes. On the other hand the multiplicative and
combined models produce filtered solutions with energy spectrum very close to the true energy spectrum for all seven
filtered modes. The energy spectrum of the additive model is also close to the true energy spectrum with just slight
deviations from it.
a b

3. Filtering with correctly specified forcing: (a) RMS errors as functions of wavenumbers. (b) Energy spectrum as a function of wavenumbers.



Fig. 4. Filtering with correctly specified forcing: snapshot of the true trajectory in the unstable regime at time t ¼ 80 together with filtered signals as a
function of space. We only show the region with x 2 ½�1;2� for clarity of presentation.
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In Fig. 4, we show a snapshot of the true trajectory in the unstable regime at t ¼ 80 together with the posterior values of
various filtered solutions. There, we observe that in the unstable regime all SPEKFs produce filtered solutions that are much
closer to the true signal relative to that of the MSM. This is explained by the fact that the multiplicative bias correction ckðtÞ
and additive bias correction bkðtÞ help the SPEKFs to recover the true dynamics better than via the MSM with averaged
damping, especially in the unstable modes 3–5, which we will discuss next.

In Fig. 5, we show the time series of the additive and multiplicative bias corrections, bkðtÞ and ckðtÞ, respectively, for wave-
numbers k ¼ 3;4;5 with intermittent unstable damping. In the panels for ckðtÞ, we also show the true value of the damping
as discussed in Section 2.3. We note that ckðtÞ of both the combined and multiplicative models follow the trajectory of the
true damping. However, the multiplicative model produces a better estimate of the true damping relative to the combined
model in all three unstable modes. As a result, we expect the multiplicative model to produce a better approximation to the
true signal uðx; tÞ, which is confirmed in Table 2. On the other hand, the panels of Fig. 5 that correspond to the additive bias
correction bkðtÞ show that bkðtÞ do not deviate much from zero, except for the times when the damping is unstable. In the
unstable regime, both the combined and additive models use the additive bias correction to recover the true signal. However,
since the model error is multiplicative for the correctly specified forcing, we expect the multiplicative model to show the
best performance among the three SPEKFs. This result is also confirmed in Table 2, in which we present the RMS errors
in real space, computed using the error formula in (33). In the same table, we also report results for the unforced case
(f̂ k ¼ 0 both for the true signal and the filter) run with slightly smaller ro ¼ 0:2 (which is greater than k�3 for wavenumbers
k > 4); here we find similar conclusions as in the forced case discussed above: the multiplicative model is the method of
choice.

4.2. Unspecified forcing

Here, we consider a true signal with forcing given by
f̂ kðtÞ ¼ Af ;k expðiðxf ;kt þ /f ;kÞÞ; ð34Þ
for k ¼ 1; . . . ;7 with amplitude Af ;k, frequency xf ;k and phase /f ;k drawn randomly from uniform distributions,



Fig. 5. Filtering with correctly specified forcing: additive bias correction, bkðtÞ, and multiplicative bias correction, ckðtÞ, for SPEKF-C (squares), SPEKF-A
(circles) and SPEKF-M (pluses) for the modes k ¼ 3;4;5 with unstable damping. The solid line shows the true damping cðtÞ.
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Af ;k � Uð0:6;1Þ;
xf ;k � Uð0:1;0:4Þ;
/f ;k � Uð0;2pÞ;

f̂ k ¼ f̂ ��k;



Table 2
Spatial RMS errors for simulations with unforced case, correctly forced case and incorrectly forced case.

Forcing Unforced case Correct forcing Incorrect forcing

ro 0.2 0.3 0.5
RMSE of perfect filter 0.346 0.391 0.454
RMSE of MSM 0.394 0.477 0.728
RMSE of MSMf¼0 – – 1.169
RMSE of SPEKF-C 0.380 0.444 0.588
RMSE of SPEKF-M 0.359 0.418 0.787
RMSE of SPEKF-A 0.398 0.457 0.601
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and unforced, f̂ kðtÞ ¼ 0, for modes k > 7. However, we do not specify this true forcing to the filter model, i.e., we use ~f k ¼ 0
for all modes.

In Fig. 6, we compare the RMS errors and the energy spectra of the true signal and of the filtered solutions mode by mode.
In terms of RMS errors, SPEKF-C is the best strategy followed by SPEKF-A and both RMS errors are smaller than that of the
MSM with perfect forcing in the unstable modes 3–5. The high filtering skill with SPEKF-M in the perfect forcing case dete-
riorates as the forcing is incorrectly specified; in this case, the absence of additive bias correction term, bk, in the multipli-
cative model degrades the filtering skill significantly. In terms of energy spectrum, we find that the first 7 most energetic
modes are filtered very well by the perfectly specified filter as well as by the combined and additive models if we compare
with the spectrum of the true signal. The multiplicative model does not provide a good approximation of the energy spec-
trum for the wavenumbers k > 3. The MSM with correctly specified forcing misses the unstable modes 3–5, while the rest of
the modes are filtered well. The MSM with unspecified forcing only filters the first two modes well, while missing the rest of
the modes. Similar conclusions hold when spatial RMS error, reported in Table 2, is used for the performance measure.
4.3. Robustness and sensitivity to stochastic parameters and observation error variances

In this section, we study how sensitive the proposed SPEKFs are to variations of stochastic parameters and how the skill of
the filters vary for different values of observation error variance, ro, for a fixed set of stochastic parameters. In this study, we
keep all but one of the parameters fixed and vary the remaining parameter in a broad range of values. The fixed parameters
are fdc;k ¼ 0:1d; cb;k ¼ 0:1d; rc;k ¼ 4r5; rb;k ¼ 4r5; xb;k ¼ 1g. It is very important to realize that we use the same set of sto-
chastic parameters for all the switching modes, that is, wavenumbers jkj 6 7. These modes have different energies and dif-
ferent correlations in time. Therefore, using the same set of stochastic parameters for a number of modes is a tough test for
the robustness of the SPEKFs.

In Fig. 7, we demonstrate the dependence of the spatially averaged RMS errors of the various filters on the stochastic
parameters and observation variance for the correctly specified forcing case. We note that both SPEKF-M and SPEKF-C are
robust to the variations of dc=

�d and rc but SPEKF-M has smaller RMS errors relative to SPEKF-C (see panels (a) and (b) in
Fig. 7). The robustness in SPEKF-C toward these two parameters is very similar to the robustness of the fifth mode studied
in [14]. For the SPEKF-M, the sensitivity toward large damping and small noise on the fifth mode study [14] disappears when
all modes are accounted for and this is because the errors in the non-switching modes are smaller. The sensitivity of the fil-
a b

Fig. 6. Filtering with unspecified forcing: (a) RMS errors as functions of wavenumbers. (b) Energy spectrum as a function of wavenumbers.
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Fig. 7. Filtering with correctly specified forcing: spatially averaged RMS errors of the perfectly specified filter (solid line), CSM (asterisks), SPEKF-C
(squares), SPEKF-M (pluses), SPEKF-A (circles) and observation error (dashes). The fixed parameters had the values dc=

�d ¼ 0:1; cb=
�d ¼

0:1; rc ¼ 0:6; rb ¼ 0:6; xb ¼ 1; ro ¼ 0:3.
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tering skill toward variations of the additive stochastic parameters, cb; xb; rb reflects the one-mode study on the fifth mode
(see panels (c) and (e) in Fig. 7); SPEKF-C is robust toward variations both in the damping and frequency phase. For noise
strength rb, SPEKF-C produces rather high errors when the magnitude of rb approaches the observation error; this result
exactly reflects what we found in the one-mode study in [14], except there the observation error is rather small. From
Fig. 7(e), we conclude that the RMS errors of all the filters increase as functions of ro. Moreover, the multiplicative model
(SPEKF-M) performs better than the combined model, SPEKF-C, which in turn is better than the additive model, SPEKF-A.
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When forcing is incorrectly specified (see Section 4.2), the situation changes considerably. In this case, the skill of SPEKF-C
and SPEKF-A is very robust with respect to variations of multiplicative stochastic parameters, dc; rc (see panels (a) and (b) in
Fig. 8). On the other hand, SPEKF-M is not skillful at all as we found and discussed in Section 4.2. When the additive stochas-
tic parameters are chosen such that cb is small and rb is rather large, then the skill of the combined and additive models is
good (see Fig. 8(c) and (d)). There is one particular regime when both the combined and additive models fail, that is, the re-
a b

c d

e f

Fig. 8. Filtering with unspecified forcing: spatially averaged RMS errors of the perfectly specified filter (solid line), CSM (asterisks), SPEKF-C (squares),
SPEKF-M (pluses), SPEKF-A (circles) and observation error (dashes). The fixed parameters had the values dc=

�d ¼ 0:1; cb=
�d ¼ 0:1; rc ¼

0:6; rb ¼ 0:6; xb ¼ 1; ro ¼ 0:5.
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gime when the additive noise is too small. In this regime we naturally expect the combined and additive model to perform
poorly since the additive bias correction is needed to recover the unspecified forcing. Next, the performance of the combined
and additive models is quite robust to the changes of xb unless this parameters takes values of order 10 or larger. (see
Fig. 8(f)). So we conclude that in our model the frequency of the additive bias correction bkðtÞ should not exceed the max-
imum frequency of the system which is equal xk ¼ 8:91 for k ¼ 1. In Fig. 8(e), we demonstrate the performance of the filters
as a function of observation variance ro. Here we see that the combined model is the best for the whole range of observation
variance. As we already pointed out earlier in this Section, it is very important to realize that the same set of stochastic
parameters is used for all wavenumbers with jkj < 7 even though initially this set was chosen for the fifth mode of our model
as in [14]. Here, we have shown that this set of stochastic parameters belongs to a broad range of robust stochastic param-
eters which produce similar high skill filtered solutions with SPEKFs, and, therefore, one should not tune the stochastic
parameters for a specific mode.
4.4. Summary

As an important test, the posterior energy spectra from both the SPEKF-M and SPEKF-C recover the energy spectrum of
the true signal with high accuracy while MSM has large errors for both correctly and incorrectly specified forcing (see Figs. 3
and 6). In the correctly specified forcing case, the multiplicative model (SPEKF-M) is better than the combined model since
the model errors are completely introduced by the multiplicative noise and hence the additional correction with additive
term is redundant. However, we can always choose an additive parameter set for the combined model such that SPEKF-C
behaves exactly like SPEKF-M. As a method of choice, we strongly recommend the combined model (SPEKF-C), which is a
very effective and robust filtering strategy when neither the true damping nor the true forcing are specified. The multipli-
cative and additive bias corrections learn the damping and the forcing from the observations and significantly improve the
filtering skill of the SPEKF-C when compared with the skill of the MSM for both correctly and incorrectly specified forcing.
5. Predictive skill

In this section, we extensively study the potential predictive skill improvement of using our additive, multiplicative and
combined models in (24), (25) and (23), respectively, over the mean model MSM in (20). Our goal is to first understand the
predictive skill in a one-mode context, especially to understand the effect of errors in initial conditions and a finite ensemble
of realizations. We will check whether there are robust parameter regimes for stochastic parameter estimation with high
predictive skill and finally whether we can translate the results in this one-mode study to the spatially extended system
for the switching SPDE as discussed earlier.
5.1. One-mode study: perfect initial conditions

To achieve our goals, we first consider a ‘‘super-ensemble” setup, that is, noiseless initial conditions and forecasts with
exact statistics. In particular, we consider solutions of
duðtÞ
dt
¼ ð�cðtÞ þxiÞuðtÞ þ f ðtÞ; ð35Þ
as the perfect initial conditions. Following [14], we fix the frequency x ¼ 8:91=k with k ¼ 5 to represent the fifth mode of our
switching SPDE and a periodic forcing f ðtÞ ¼ expð0:15itÞ. We allow the damping cðtÞ to switch between stable, dþ ¼ 2:27, and
unstable, d� ¼ �0:04, regimes with random switching time as described in Section 2.3 with average damping strength of
�d ¼ 1:5. In our numerical simulations, we consider 10,000 initial conditions, ðu; b; cÞ with b ¼ 0, by sampling solutions of
(35) at every 2.5 time units. To generate noiseless forecasts in the super-ensemble setup, we use the exact mean and covari-
ance of each model [14] with zero initial covariances. In our numerical experiments, we propagate these statistics for 2.5
time units, which is about four times the average damping time of the true signal 1=�d ¼ 0:67. With this forecast time, 2.5
units, the 10,000 initial conditions are practically independent.

To quantify the predictive skill, we compute the following average RMS error
RMSðsÞ ¼ 1
½B�
X
ti2B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�umðti þ sjtiÞ � utðti þ sÞj2

q
: ð36Þ
In (36), this RMS error is averaged over predictions with initial times ti that belong to set B. In (36), we denote ½B� as the
number of components in subset B; �umðti þ sjtiÞ as the mean forecast with any model (including the additive, multiplicative,
combined and MSM) starting at time ti for lead time s, and utðti þ sÞ as a solution of 35 at time ti þ s. We will consider dif-
ferent sets of initial condition, including: (a) the whole initial conditions, W, (b) those in the stable regime, S, (c) in the unsta-
ble regime, U, (d) initial conditions at the instances just after a transition from stable to unstable, As and (e) initial conditions
at the instances just after a transition from stable to unstable, Au. In our particular noiseless true signal, we have ½W � ¼ 9989
omitting the last 2.75 time units from the 10,000 initial conditions, ½S� ¼ 6692; ½U� ¼ 3296; ½Au� ¼ 127 and ½As� ¼ 157.
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stochastic parameters dc ¼ 0:01�d, rb ¼ rc ¼ 0:1r; xb ¼ x, and an arbitrary cb. Here, we see a significant forecast improve-
ment with the combined (multiplicative) model relative to the MSM (additive) model, especially in subsets U and As. On the
other hand, when forcing is unspecified (in our numerical simulation, we set ~f ðtÞ ¼ 0 for our filter model), we find that stron-
ger damping dc is necessary yet the advantage of the combined (multiplicative) model over the MSM (additive) is signifi-
cantly reduced (see Fig. 10).

In Fig. 11, we also show the effect of finite ensemble size for the correctly specified forcing as in Fig. 9. Here, the mean
forecast is generated by solving (23)–(25) using an ensemble size of K ¼ 10n; n ¼ 1;2;3;4 and averaging over these ensem-
Fig. 10. Predictive skill of the one-mode ODE with perfect initial conditions: average RMS errors over W ; S; U; As; Au as functions of lead time for
unspecified forcing. Compare with Fig. 9 for the case of correctly specified forcing.



Fig. 11. Predictive skill of the one-mode ODE with perfect initial conditions: average RMS errors over W as functions of lead time for correctly specified
forcing with finite ensemble. Multiplicative model (left panel) and combined model (right panel).
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bles instead of using exact statistics as computed in [14]. From these experiments, we find tiny forecast degradation when an
ensemble of size 10 is used with both the combined and multiplicative models. For the additive model, there is almost no
difference between the finite ensemble experiment with K 6 10 and the perfect statistics (result is not reported in Fig. 11).

To conclude this section, we define a quantity for indicating the average predictive skill improvement using the combined
model relative to MSM over time interval 0 < t < sn by
Table 3
Average

Subs

W
S
U
As

Au
hImpri0<t<sn
¼ 1

n

Xn

i¼1

1� RMSCðsiÞ
RMSMSMðsiÞ

� �
; si ¼ iDt; ð37Þ
where sn ¼minðnDt;2:5Þ is the maximum time for the combined model to provide better forecast skill relative to MSM, i.e.,
RMSCðnDtÞ < RMSMSMðnDtÞ. Table 3 shows the average forecast improvement of the combined model relative to MSM for dif-
ferent subsets. We see a significant improvement (70% on average) up to lead time sn ¼ 2:5 (four times damping time, 0.67)
for the correctly specified forcing. On the other hand, when forcing is unspecified, the improvement reduces significantly;
the best performance is about 10% improvement in the unstable regime U up to lead time sn ¼ 1:25 (which is still twice
the damping time).
forecast improvement with the combined model over MSM for perfect initial condition.

et Correct forcing hImpri0<t<sn
(%) sn Unspecified forcing hImpri0<t<sn

(%) sn

68 >2.5 3 1
63 >2.5 14 0.75
72 >2.5 11 1.25
69 >2.5 5 2.25
69 >2.5 N/A





Fig. 13. Predictive skill of the one-mode ODE with imperfect initial conditions: average RMS errors over U as functions of lead time for correctly specified
forcing with initial conditions from SPEKF-A (left column) and SPEKF-C (right column). Each row shows results with different cb .

Table 4
Average forecast improvement with the combined model over MSM for imperfect initial condition and correctly specified forcing.

Subset SPEKF-A hImpri0<t<sn
(%) sn SPEKF-M hImpri0<t<sn

(%) sn NEKC-C hImpri0<t<sn
(%) sn

W 16 1.25 51 2.25 22 >2.5
S 10 0.75 46 >2.5 17 >2.5
U 13 >2.5 59 2 25 >2.5
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Ultimately, we are more interested to the case where initial conditions are generated from SPEKF-C since this is the meth-
od of choice for filtering as pointed out in Section 4.4. Here, we find that not only does the predictive skill of the combined
and multiplicative models increase over the additive model and MSM persist in S and U as observed earlier with perfect ini-
tial conditions and correct forcing (see Fig. 9), but it is also robust toward variations of cb (see panels (b), (d) and (f) in
Fig. 13). In Table 4, we see that the average improvement (computed for the case cb ¼ �d) is about 17% in S and 25% in U, both
up to lead time sn ¼ 2:5. Notice that this average improvement (see Fig. 13(d)) is less than that with initial conditions from
SPEKF-M (see Fig. 12(b)) because here the initial b contains error and b – 0. The failure in subsets As and Au is unavoidable for
similar reasons discussed earlier.

The MSM does not provide initial values for either multiplicative or additive bias corrections. The trivial choice is to im-
pose the equilibrium initial conditions for the biases, b ¼ 0 and c ¼ �d, which simultaneously turns off the dynamics for cor-
recting both additive and multiplicative biases. In Table 5, we report the average improvement of the combined model
relative to MSM for various initial conditions for unspecified forcing; the predictive skill improvement is significantly
reduced.
5.3. Numerical results for the switching SPDE

In this section, we quantify the predictive skill for the spatially extended switching SPDE in (2). In particular, we consider
the filtered solutions in Section 4 as initial conditions. Different from above simulations, these initial conditions are not gen-
erated in a super-ensemble setting. The initial conditions from the perfectly specified filter, SPEKF-M, and MSM, do not pro-
vide the b component, and we set b ¼ 0 as in earlier numerical experiments for one-mode in Section 5.2. In the absence of c
component, we use the true damping value for initial conditions from the perfectly specified filter and the equilibrium
damping �d for initial conditions from SPEKF-A and MSM.

For predictions with additive, multiplicative and combined models, we choose stochastic parameters from the robust
parameter set of the fifth mode, as discussed in the one-mode study in Sections 5.1 and 5.2, which are, fcb;k ¼
�d; xb;k ¼ xk; rb;k ¼ 0:1r; dc ¼ 0:01�d; rc ¼ 0:1rg for all wavenumbers k. As opposed to the filtering problem (see Section
4), here we propagate not only the observed modes ðk ¼ 1; . . . ;7Þ, but all modes because we assume no knowledge about
the observations for the prediction problem. Obviously, the non-switching modes will have equivalent skill with any of
the three prediction models above and MSM. In this section, we also consider predictions with perfect model by utilizing
the true c in addition to the three prediction models discussed above and MSM. Note that we did not show predictions with
perfect model in the one-mode study in Sections 5.1 and 5.2 because the error in the initial conditions is nearly zero in the
super-ensemble setup and the error growth in the unstable regime U with rate d ¼ 0:04 becomes negligible up to lead time
s ¼ 2:5. This, however, is not true in a finite realization setting as we will see shortly.

In Fig. 14, we show the RMS errors (averaged over spatial domain and subsets W ; U) as functions of lead time s for initial
conditions from the perfectly specified filter, SPEKF-C, and SPEKF-M, for the correctly specified forcing case. When initial
conditions are from the perfectly specified filter, we find that the predictive skill of the combined model supersedes MSM
by 17% on average in U up to lead time sn ¼ 2:5 and is almost as good as the predictive skill of the perfect model up to lead
time sn ¼ 1:25. This is almost two times the damping time 0.67 of each Fourier mode and nearly one half of the 3 days phys-
ical space decorrelation time. On the other hand, when initial conditions are from SPEKF-C and SPEKF-M, the improvement of
predictive skill with combined model over MSM decreases to only 11% in U up to lead time sn ¼ 2:5 in the former case and
sn ¼ 1:75 in the latter case, but both predictions are still close to that of the perfect model up to lead time sn ¼ 0:75. When
initial conditions are from SPEKF-A or MSM, there is no improvement over MSM using any of the models we proposed. This is
because the multiplicative bias correction term is constant, cðtÞ ¼ �d, for every t as we discussed earlier. This also explains the
identical predictive skill of modes higher than 7 as shown in Fig. 15; the initial conditions in these modes are not affected by
any observations and they are only solutions of MSM.

We also find the results in Sections 5.1 and 5.2 of the one-mode study translate fully to the SPDE. That is, for initial con-
ditions from the perfectly specified filter and from SPEKF-M, MSM is identical to the additive model and the multiplicative
model is identical to the combined model. On the other hand, when initial conditions are from SPEKF-C, no methods are
identical but since their differences are only in a few switching modes (see Fig. 15), their spatially averaged RMS errors
are hardly distinguishable by sight (see second row in Fig. 14). From both the spatial and the mode-by-mode RMS errors,
shown in Figs. 14 and 15, we conclude that the advantage of the combined and multiplicative models over MSM and additive
model in the switching modes (3–5) translates to the spatially extended switching PDE.

In Fig. 15, the RMS errors of the combined and multiplicative models are slightly larger than those of the MSM and addi-
tive model in the strongly damped modes 1–2 and stable modes 6–7 when the system is in the unstable regime, U. In this
Table 5
Average forecast improvement with the combined model over MSM for imperfect initial condition and unspecified forcing.

Subset SPEKF-A hImpri0<t<sn
(%) sn SPEKF-M hImpri0<t<sn

(%) sn NEKC-C hImpri0<t<sn
(%) sn

W 11 0.5 3 0.75 3 0.75
U 9 0.75 12 0.75 12 0.75





Fig. 15. Predictive skill of the switching PDE: average RMS errors over U as functions of lead time for wavenumbers k ¼ 1; . . . ;9 for correctly specified
forcing with initial conditions from SPEKF-C.
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5.4. Summary

We conclude this section by recommending the combined model as the method of choice for better predictive skill pro-
vided that forcing is correctly specified, especially in the unstable regime, since it is robust toward variations of parameters
and imperfect initial conditions. Most importantly, its predictive skill is as good as the predictive skill with the perfect model
at least up to the damping time, 0.67, regardless of any errors in initial conditions. This high predictive skill is indeed a sig-
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nificant improvement over the MSM up to 2.5 days as shown in Fig. 10, which is almost four times the damping time and is
very close to the 3 days decorrelation time of the SPDE. We also find the predictive skill with the combined model is not very
sensitive toward finite ensemble size; our simulation suggests that an ensemble of order 10 is good enough.

On the other hand, we find that when the forcing is unspecified, the model errors become too large as the prediction lead
time grows beyond the observation time. In the stable regime, there is almost no improvement in predictive skill with the
combined model relative to the MSM. When initial conditions are imperfect, both the combined and multiplicative models
do not have any ability to detect the transitions, this is apparent from the failure observed in subsets As and Au (right after
transitions) in Fig. 12.
6. Concluding discussion

In this paper, we introduce a systematic strategy to filter and predict partially observed spatially extended turbulent
systems with model errors. In particular, we blend the filter reduction strategies for sparse observations, introduced in
[19], and the stochastic parametrization strategy, introduced in [14]. In our numerical experiments, we test our proposed
strategy on a toy model for turbulent Rossby waves in a one-dimensional periodic domain that allows baroclinic
instability to occur one third of the times at random time despite a stable long time average statistics. In this switching
SPDE, the model errors are introduced through the randomly occurring instabilities and/or the unspecified external
forcing.

In the filtering case with or without correct forcing, the high filtering skill with the combined model is found not only
by quantifying the RMS errors but also by matching the energy spectra of the filtered and true signals. The posterior esti-
mate of the true energy spectrum with the combined model is very accurate while the posterior with the mean stochastic
model (MSM) has large errors for both correctly and incorrectly specified forcing (see Figs. 3 and 6). When forcing is
correctly specified, both filtering and predictive skill of the multiplicative model are identical to those of the combined
model since all errors are from the multiplicative noise term. In terms of prediction, we find that the combined
model is as good as the perfect model up to lead times of at least one damping time, 0.67. This high predictive skill
is indeed an improvement over MSM of at least 10% for up to 2.5 days with larger improvement at intermediate times
(see Figs. 14 and 15). In the one-mode study, this 10% improvement is boosted to nearly 20–60% (depending on which
initial conditions are used, see Table 4) for almost four times the damping time scale 0.67. On the other hand, when
the forcing is unspecified, the high filtering skill with the combined model does not persist for prediction since the
model errors become too large when the forecast lead time is much larger than the observation times considered for
filtering.

Numerically, we studied the robustness of the proposed filtering and prediction strategies towards variations of param-
eters in the stochastic parameter estimation scheme. We have found that the same set of stochastic parameters can be used
for all filtered or predicted modes even though they have different energies and dissipations. We showed numerically that
the filtering and predictive skill do not change much when the stochastic parameters are varied in significant broad ranges.
We also showed robustness of both the filtering skill toward variations of observation noise variances and the prediction skill
toward variations of initial conditions.

Finally, we conclude this paper by advertising our ongoing work on applying this encouraging strategy to a more realistic
model for baroclinic instability due to vertical wind shear in a three-dimensional domain [34] and to a three cloud model
that represents tropical atmospheric dynamics in a single latitude belt [24].
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Appendix A. Time correlation functions

In this appendix, we compute the statistical steady state time correlation function of the kth Fourier mode, ûkðtÞ, of the
solution of SDE (6) which is given by
ûkðtÞ ¼ ûkð0ÞepðikÞt þ
Z t

0
f̂ kðsÞepðikÞðt�sÞ dsþ rk

Z t

0
epðikÞðt�sÞ dWkðtÞ; ð38Þ
where with pðikÞ ¼ ~pðikÞ � cðikÞ and white noise dWk ¼ 2�1=2ðdWk;1 þ idWk;2Þ and each Wk;j is a Wiener process. Note that we
assume zero initial covariance for simplicity. The time correlation function is defined as follows:
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Rkðt; t0Þ ¼ hðûkðtÞ � �̂ukÞðûkðt0Þ � �̂ukÞ�i ¼ rk

Z t

0
epðikÞðt�sÞ dWkðsÞ rk

Z t0

0
epðikÞðt0�s0 Þ dWkðs0Þ

 !�* +

¼ r2
k epðikÞtþp�ðikÞt0

Z t

0

Z t0

0
e�ðpðikÞsþp�ðikÞs0 Þ 1

2

X2

i¼1

hdWk;iðsÞdWk;iðs0Þi

¼ r2
k epðikÞtþp�ðikÞt0

Z t

0

Z t0

0
e�ðpðikÞsþp�ðikÞs0 Þdðs� s0Þdsds0 ¼ r2

k epðikÞtþp�ðikÞt0
Z t0

0
e�ðpðikÞþp�ðikÞÞs0 ds0

¼ r2
k

2cðikÞ e
pðikÞtþp�ðikÞt0 ðe2cðikÞt � 1Þ ¼ r2

k

2cðikÞ e
cðikÞðt�t0 Þ�~pðikÞðt0�tÞð1� e�2cðikÞtÞ: ð39Þ
In deriving this, we assume rk 2 R and we use the standard properties of white noise and the integral of the delta function
[22,13]. Let t0 ¼ t þ s and let t !1, and substitute Ek ¼ r2

k=2cðikÞ as in Eq. (9); then we obtain the asymptotic temporal cor-
relation function
RkðsÞ ¼ Eke�cðikÞse�~pðikÞs: ð40Þ
Appendix B. Kalman filter formula

The classical Kalman filter [23,22] is an optimal two-step predictor and corrector method that includes observations at
every discrete time tmþ1 ¼ tm þ Dt to adjust the prediction when the filter and observation models are linear and Gaussian.
In discrete time setting, the Kalman filter solves the following linear problem
umþ1 ¼ Fmþ1um þ fmþ1 þ rmþ1; ð41Þ
vmþ1 ¼ Gumþ1 þ ro

mþ1; ð42Þ
where in Eq. (41), the true signal um 2 CN is the quantity of interest at time tm; Fm 2 CN�N is the discrete linear deterministic
operator that maps uðtÞ forward in time, fm 2 CN is an external forcing at time tm, the N-dimensional complex valued noise
rm ¼ ðrm;1 þ irm;2Þ=

ffiffiffi
2
p

is defined with Gaussian white noise components frm;i 2 RN; i ¼ 1;2g with mean zero and variance
rm 2 CN�N . Observation vm 2 CM is modeled as a transformation of the true signal um via linear operator G 2 CM�N plus a com-
plex Gaussian noise ro

m ¼ ðro
m;1 þ iro

m;2Þ=
ffiffiffi
2
p
2 CM , where each component fro

m;i 2 RM ; i ¼ 1;2g has zero mean and variance
ro 2 CM�M .

The basic Kalman filter solution to (41) and (42) produces an estimate of the mean and covariance of umþ1 prior and pos-
terior to knowing observation vmþ1 [23,22,1,7]. The prior mean state and covariance are denoted by �umþ1jm and rmþ1jm, con-
secutively, while the posterior mean state and covariance are denoted by �umþ1jmþ1 and rmþ1jmþ1, consecutively. These statistics
are dynamically updated as follows:

Prior update:
�umþ1jm ¼ eF mþ1�umjm þ ~f mþ1; ð43Þ
rmþ1jm ¼ eF mþ1rmjmeF �mþ1 þ ~rmþ1; ð44Þ
Posterior update:
�umþ1jmþ1 ¼ �umþ1jm þ Kmþ1ðvmþ1 � G�umþ1jmÞ; ð45Þ
rmþ1jmþ1 ¼ ðI � Kmþ1GÞrmþ1jm; ð46Þ
Kmþ1 ¼ rmþ1jmG�ðGrmþ1jmG� þ roÞ�1

; ð47Þ
where the asterisk ‘*’ in Eqs. (44) and (47) denotes the complex adjoint. The posterior mean update, �umþ1jmþ1, in (45) is simply
a linear combination between the prior mean state, �umþ1jm, and observation, vmþ1, weighted in accordance to the Kalman gain
matrix Kmþ1 2 CN�M . In a perfect model context, eF m ¼ Fm;

~f m ¼ fm and ~rm ¼ rm.
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